

Non-Linear Electron Resonance Heating in CCRF Discharges: A Kinetic Interpretation

S. Wilczek¹, J. Trieschmann¹, J. Schulze², E. Schüngel², D. Eremin¹, R. P. Brinkmann¹, A. Derzsi³, I. Korolov³, P. Hartmann³, Z. Donkó³, T. Mussenbrock¹

¹Ruhr-University Bochum
²West Virginia University
³Wigner Research Centre for Physics

Electron heating in ccrf discharges at low pressures

- dominated by stochastic heating
- expanding sheaths accelerate beam-like electrons
- non-local and nearly collisionless regime
- non-linear system

Sebastian Wilczek | GEC | October 13, 2015

Non-linearity of the system

Non-linearity of the system

Outline and goal of this work

- harmonic oscillations in the rf current investigated by PIC simulations¹
- Iocal behavior of conduction and displacement current regarding the nonlinearity of the rf current
- interplay between electron beams and bulk electrons

Questions

- 1. What is the kinetic origin of high frequency oscillations in the rf current?
- 2. In what way is current continuity ensured all the times?

RU

¹M.M. Turner et. al, Phys. Plasmas 20, 013507 (2013)

Excitation of harmonics (global parameters)

- 150 V, 55 MHz, 1.3 Pa argon, 15 mm gap size² $\Rightarrow \bar{n_e} \approx 6 \cdot 10^{14} \text{m}^{-3}$
- excitation of harmonics in the total current
- Nonlinear Electron Resonance Heating (NERH)

²S. Wilczek et. al, Plasma Sourc. Sci. Technol. 24 024002 (2015)

Excitation of harmonics (local parameters)

- current continuity must be ensured all the times $(\nabla \cdot j_{tot} = 0)$
- the 180° phase shifted displacement current tries to compensate the harmonics of the conduction current

$$j_{tot}(x,t) = j_c(x,t) + j_d(x,t) = (\Gamma_i(x,t) - \Gamma_e(x,t))e + \varepsilon_0 \frac{\partial E(x,t)}{\partial t}$$

Conduction vs. displacement current density

- current continuity must be ensured all the times $(\nabla \cdot j_{tot} = 0)$
- the 180° phase shifted displacement current tries to compensate the harmonics of the conduction current
- $j_{tot}(x,t) = j_c(x,t) + j_d(x,t) = (\Gamma_i(x,t) \Gamma_e(x,t))e + \varepsilon_0 \frac{\partial E(x,t)}{\partial t}$
- kinetic interpretation on a nanosecond timescale is necessary

Spatio-temporal distribution of the current densities

- current continuity ensured locally and temporal $(\nabla \cdot j_{tot} = 0)$
- pronounced double beam structure in the conduction current
- current compensation influences the whole electron dynamic, especially the plasma bulk

Conduction current and beam-like electrons

- the major part of the conduction current is represented by the spatio-temporal distribution of fast electrons above 11 eV
- these beam-like electrons are accelerated by the modulated plasma sheath and are responsible for the ionization and excitation³

important to sustain the plasma

³J. Schulze et al., J. Phys. D: Appl. Phys. 41, 042003 (2008)

Bulk electrons vs. energetic electrons

hot electrons: $\varepsilon_h > 11 \text{ eV}$ moving upwards: $v_x > 0$

- electron-sheath interaction⁴
- electron beam interacting with bulk electrons

Sebastian Wilczek | GEC | October 13, 2015

cold electrons: $\varepsilon_c < 4 \text{ eV}$ moving downwards: $v_x < 0$

⁴D. Vender et. al., J. Vac. Sci. Technol. A 10, 1331 (1992)

Bulk electrons vs. energetic electrons ($t = t_1$)

60

Current and voltage at the electrode

Bulk electrons vs. energetic electrons ($t = t_2$)

60

Current and voltage at the electrode

Bulk electrons vs. energetic electrons ($t = t_3$)

Current and voltage at the electrode

Bulk electrons vs. energetic electrons ($t = t_4$)

Asymmetric discharge (300 V, 13.56 MHz, 1 Pa, 80 mm)

0.8

0.0

10

20

30

40

Time (ns)

50

60

70

30

20 0

Conclusion

- non-linearity of the system leads to harmonic excitation
- kinetic interpretation presents the mechanism of energetic electron beams interacting with bulk electrons
- bulk electrons are attracted to the modulated plasma sheath
- interaction leads to further beam acceleration
- conduction and displacement current must ensure current conservation during the presence of electron beams
- asymmetric discharge pronounced excitation of PSR

Outlook: Poster Session II on Wednesday

LW1.00018 : Resonance Phenomena of Voltage and Current Driven Capacitively Coupled Plasmas

