

Department of Electrical Engineering and Information Technology Institute of Theoretical Electrical Engineering

Resonance Phenomena of Voltage and Current Driven Capacitively Coupled Plasmas

<u>Sebastian Wilczek¹</u>, Jan Trieschmann¹, Julian Schulze², Edmund Schüngel², Ralf Peter Brinkmann¹, Aranka Derzsi³, Ihor Korolov³, Zoltán Donkó³, and Thomas Mussenbrock¹

Electron density over driving voltage amplitude

¹Institute of Theoretical Electrical Engineering, Ruhr-University Bochum, Germany ²Department of Physics, West Virginia University, Morgantown, USA ³Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary

Resonances in CCRF Discharges

Current Source

Voltage Source

62 A/m², 55 MHz, 15 mm gap size, 1.3 Pa argon:

- setup: 150 350 V, 55 MHz, 15 mm gap, 1.3 Pa argon
 ↑ voltage ⇒ ↑ ionization ⇒ ↑ n_e ⇒ ↑ ω_{pe} ⇒ ↓ τ_{pe} = 2π/ω_{pe}
 electrons respond to local perturbations on faster timescales
 excitation of higher harmonics is possible
- local perturbations by energetic beam electrons
- (bulk) electron-sheath interaction [5]

• sheath edge criterion [6]: $\int_{0}^{s(t)} n_i(x) dx = \int_{s(t)}^{\infty} (n_i(x) - n_e(x)) dx$

• beam electrons leave a positive space charge behind, \Rightarrow electric field attracts bulk electrons back t_2

Asymmetric Discharge

300 V, 13.56 MHz, 80 mm gap size, 1 Pa argon, electrode area ratio $A_a/A_i \approx$ 25.01, blocking capacitor 0.3 nF:

- bulk electrons can only respond on the timescale of the local plasma frequency au pprox 3.5 ns
- bulk electrons interact with the expanding sheath, second beam is generated t_3 , second maximum of the conduction current

300 V, 55 MHz, 15 mm gap size, 1.3 Pa argon:

• complex harmonic oscillations can be understood, even in asymmetric discharges

different electrode areas lead to a dc self-bias, major part of the rf voltage drops across one sheath (lower electrode 20 mm)
complex Fourier spectra indicate series and local (near the plasma sheath) parallel resonances

Conclusion

• kinetic analysis is required in order to understand local kinetic phenomena which lead to resonance effects

interplay of electron beams (accelerated by the expanding sheath) and bulk electrons (modulated by the local plasma frequency)
compensation of conduction and displacement current leads to local parallel resonances (even in current driven systems)

• only in voltage driven systems, the non-linear interaction of bulk electrons with the plasma sheaths leads to harmonics in the total current and therefore to the self-excitation of the plasma series resonance

REFERENCES [1] Ku V P T 1998 *J. Appl. Phys.* **84** 6536; [2] Lieberman M A and Lichtenberg A J 2005, Principles of Plasma Discharges and Materials Processing, 2nd. ed., Wiley Interscience, NJ: Wiley; [3] Turner M M, Derzsi A, Donkó Z, Eremin D, Kelly S J, Lafleur T, and Mussenbrock T 2013 *Physics of Plasmas* **20** 013507; [4] Mussenbrock T and Brinkmann R P 2006 *Appl. Phys. Lett.* **88** 151503; [5] Vender D and Boswell R W 1992 *J. Vac. Sci. Technol. A* **10** 1331; [6] Brinkmann R P 2007 *J. Appl. Phys.* **102** 093303;

ACKNOWLEDGMENT This work is supported by the German Research Foundation (DFG) in the frame of transregional collaborative research centre (SFB) TRR-87 and by the Federal Ministry of Education and Research (BMBF) in the frame of Plasma and Optical Technology (PluTO+)

CONTACT Dipl.-Ing. Sebastian Wilczek | Building ID, Room 1/130 Institute of Theoretical Electrical Engineering | Department of Electrical Engineering and Information Technology | Ruhr University Bochum | D-44780 Bochum, Germany Phone: +49 234 32 - 27662 | eMail: Sebastian.Wilczek@rub.de |