

Analyse der Dynamik von RF-modulierten Elektronenbeams in kapazitiv gekoppelten Plasmen

S. Wilczek¹, J. Trieschmann¹, J. Schulze², E. Schüngel², R. P. Brinkmann¹, A. Derzsi³, I. Korolov³, P. Hartmann³, Z. Donkó³, T. Mussenbrock¹

¹Ruhr-University Bochum
²West Virginia University
²Wigner Research Centre for Physics

Electron heating in ccrf discharges

- classical capacitively coupled radio frequency discharge
- typical process parameters: pressure, gas, input power, driving frequency, reactor geometry, gap size
- in low-pressures (p < 10 Pa) stochastische heating is dominant

Electron heating in ccrf discharges

- electron interaction/reflection at the rf-modulated boundary sheaths
- Which process parameters influence the electron dynamics?
- focus on: pressure, driving frequency, gap size

Spatio-temporal distribution of the electron density

- 3 Pa argon, 15 mm gap size, 150 V, 55 MHz ($\approx 4 \cdot 13.56$ MHz)
- 1d3v Particle-In-Cell Simulation¹
- homogeneous electron density in the plasma bulk
- electrons modulated in the plasma sheath

¹M.M. Turner et. al, Phys. Plasmas 20, 013507 (2013)

Spatio-temporal distribution of fast electrons ($\varepsilon > 15.76 \text{ eV}$)

- 3 Pa argon, 15 mm gap size, 150 V, 55 MHz ($\approx 4 \cdot 13.56$ MHz)
- extract all electrons above 15.76 eV (ionization threshold of argon)
- sheath expansion accelerates energetic electrons
- directed acceleration \implies beam-character

Spatio-temporal distribution of the ionization rate

- 3 Pa argon, 15 mm gap size, 150 V, 55 MHz ($\approx 4 \cdot 13.56$ MHz)
- responsible for the ionization process (sustain the plasma)
- influences the plasma density as well as the EEPF
- experimental measurement with PROES²

²J. Schulze et al., J. Phys. D: Appl. Phys. 41, 042003 (2008)

Influence of gap size and gas pressure

- 150 V, 50 MHz
- 1 Pa argon $\Longrightarrow \lambda_m \approx 45 \text{ mm}$

70 mm:
$$\frac{\lambda_m}{L_{gap}} \approx \frac{45mm}{70mm} = 0.64 < 1$$

• 40 mm:
$$\frac{\lambda_m}{L_{gap}} \approx \frac{45mm}{40mm} = 1.12 \ge 1$$

• 20 mm:
$$\frac{\lambda_m}{L_{gap}} \approx \frac{45mm}{20mm} = 2.25 > 1$$

- What is the influence of changing the frequency regarding the beam dynamics?
- experimental quite challenging!

Frequency variation (different pressures)

2.5x10¹⁶

2x10¹⁶

1.5x10¹⁶

1x10¹⁶

5x10¹⁵

0 └ 30

Averaged electron density in m^{-3}

60

70

• $\frac{\lambda_m}{L_{gap}} < 1$ interaction with the oppsing sheath is not important

40

Inear/quadratic³ trend of the electron density over the driving frequency ($n_e \sim f^2$)

50

Frequency in MHz

80

RUE

³M. A. Liebermann and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (2005)

Frequency variation (different pressures)

- $\frac{\lambda_m}{L_{gap}} \ge 1$ interaction with the opposing sheath becomes important
- density over frequency becomes non-quadratic

Frequency variation⁴ (different pressures)

• $\frac{\lambda_m}{L_{gap}} > 1$ beam interaction is significant

abrupt mode-transition (step-like increase (factor of 13))

⁴S. Wilczek et. al, Plasma Sources Sci. Technol. 24, 024002 (2015)

Frequency variation: Impingement phase (1.3 Pa, 15mm)

Time in ns

Frequency variation: Energy loss (1.3 Pa, 15mm)

Time in ns

Energy per electron lost at the electrodes

EEPF as a function of the driving frequency

- control of the EEPF
- bi- and tri-Maxwellian
- influences the tail (high energetic particles)
- allows us to get a better control of the plasma process

Conclusion

- control of the electron beam regarding the impingement phase at the opposing sheath
- relation of pressure and gap size is important $(\frac{\lambda_m}{L_{eap}} > 1)$
- driving frequency also changes the impingement phase
- the dependence of the plasma density on the driving frequency is not found to be quadratic
- instead a step-like increase is observed
- energetic electrons hit the sheath minimum, overcome the sheath potential and can be lost at the electrode
- second electron beam is generated due to beam bulk interaction
- bulk electrons are attracted back to the expanding sheath edge and generates the second electron beam⁵

⁵S. Wilczek et. al, in preparation, arXiv:1507.05505 (2016)