

Voltage vs. Current Driven CCRF Discharges: Differences in Electron and Ion Dynamics

S. Wilczek¹, J. Trieschmann¹, J. Schulze¹, R. P. Brinkmann¹, A. Derzsi², P. Hartmann², Z. Donkó², T. Mussenbrock¹

¹Ruhr-University Bochum, Germany
²Wigner Research Centre for Physics, Budapest, Hungary

Power input for asymmetric ccrf discharges

- most ccrf discharges are asymmetric, electrode surfaces are naturally grounded
- experiments: power is coupled via matchbox into the system
- simulation and models: voltage and current sources are frequently used
- what are the differences in low pressure ccrf discharges?

RUE

Resonance phenomena in asymmetric ccrf discharges

- global model to determine plasma series resonance (PSR)
- self-excitation of PSR is eliminated using current sources (no harmonics)
- focus on the nonlinear interaction between sheath and bulk on a nanosecond timescale to understand the differences in voltage and current driven systems

Particle-In-Cell simulation of an asymmetric ccp

- Id3v PIC simulation with a spherical grid
- system is spherical symmetric \implies purely 1d along r
- obtain geometrical asymmetry and a self-consistent self-bias

Voltage and current variation: setup

• $f_{\rm rf} = 13.56 \, \rm MHz$

• $p_{gas} = 1$ Pa argon

- $L_{gap} = 60 \text{ mm}$
- $V_{\rm rf} = 100.....900 \, \rm V$

- $\frac{A_g}{A_d} = 16$
- $J_{\rm rf} = 10....140 \ {\rm A/m^2}$
- to compare both variations $\implies S_{abs} = S_e + S_i = \langle \vec{j_c} \cdot \vec{E} \rangle_{x,t}$

Voltage and current variation: electron density

- voltage source leads to higher densities (same input power!!!)
- especially for higher absorbed power, density difference about 20%
- how is the absorbed power divided? \implies $S_{abs} = S_e + S_i$

Voltage and current variation: power distribution

- ion power absorption dominates for higher input power
- 1-2% differences in the electron an ion power absorption
- voltage source puts more power into the electron dynamics
- nonlinear electron resonance heating¹ (NERH) enhances the ionization
- compare 700 V and 100 A/m² ($0.5 \cdot 10^5$ W/m³) in more detail

¹T. Mussenbrock and R.P. Brinkmann, Appl. Phys. Lett. 88, 151503 (2006)

Sebastian Wilczek | GEC Bochum | October 14, 2016

Current/Voltage at the electrode and the Fourier spectra

RUB

voltage source: 700 V

Spatio-temporal electron density

RUB

voltage source: 700 V

Spatio-temporal electron power density

voltage source: 700 V

Spatio-temporal electron power density

voltage source: 700 V

RUB

Fast electrons above 15.76 eV

voltage source: 700 V

Fast electrons above 15.76 eV

voltage source: 700 V

Ionization rate

voltage source: 700 V

Beam electrons vs. bulk electrons

voltage source: 700 V

Beam electrons vs. bulk electrons

voltage source: 700 V

Conclusion

- significant differences of current and voltage driven discharges
- different power distribution of the absorbed electron and ion power
- voltage sources represent the correct physics of asymmetric ccrf discharges
- nonlinear electron resonance heating plays a crucial role for the ionization process in voltage driven systems
- electron beam excites the bulk electrons which are attracted back to the sheath²
- nonlinear interaction with the plasma sheath leads to multiple electron beams and the generation of harmonics in the current

Outlook:

 even in symmetric discharges significant differences occur, especially at low pressures (~1 Pa)

²Wilczek et al., Phys. Plasmas. 23, 063514 (2016)