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This presentation is based on the tutorial ,,Electron dynamics in low
pressure capacitively coupled radio frequency discharges®, which has
already been published as a featured article in Journal of Applied Physics

https://doi.org/10.1063/5.0003114

S. Wilczek et al., J. Appl. Phys., 127, 181101 (2020)
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Motivation: Electron Dynamics
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m control of the electrons in order to optimize the industrial relevant discharges

®m however, electrons at low pressures (< 10 Pa) indicate a strong anisotropy
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Motivation: Electron Dynamics
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m control of the electrons in order to optimize the industrial relevant discharges
®m however, electrons at low pressures (< 10 Pa) indicate a strong anisotropy
m electron distribution function strongly differs from a Maxwellian distribution

® challenging to understand and control the electron dynamics
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Goal of this Work

1. How do the electrons gain and lose their energy in an electric field?
Traditionally, how does the electron heating really work?

2. How to deal with the thermodynamic concept of the electron
temperature in such a very nonlocal and anisotropic regime?
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What is actually Electron Heating?
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Electron Heating Terminologies

l heating

collisional collisionless

(classical) ohmic heating stochastic heating
(anomalous, sheath, transit time)

Further terminologies:

® nonlinear electron resonance heating ® bounce-resonance-heating
B pressure heating ® secondary electron heating
®m ambipolar heating ® nonlinear wave-particle heating

Finally, most of the terms describe the same mechanism:
The particle interaction with a time-varying electric field!
However, no coherent terminologies!
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Simulation Setup

m 1d3v PIC/MCC simulation

m planar, parallel and infinite electrodes —

® axial symmetric, translational AT = Lgap
invariant iny and z

® only parallel and perpendicular p =3 Pa (argon)
directions

B argon gas pressure: 3 Pa ‘'z =0

® gap size: 50 mm
m driving frequency: 13.56 MHz
m yoltage amplitude: 500 V —

® no surface models
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Electron Power Absorption

= electron power density: P, =, - E
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Electron Power Absorption

® electron power density: P, =, - E
® dominant power absorption near sheath edge (black solid line)
® dominant power absorption in the ambipolar region in front of the sheath edge

® how to study the electron power absorption mechanism in detail?
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Electron Power Absorption

2
momentum balance o(neuy ) d(n.uj)  0p,
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Electron Power Absorption

2
solving for the E = e o(uyn,)  o(nuj) B 1 dpy B 1 -
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Electron Power Absorption

mUItIpIy by the .]eE — ]eEin + JeEpr +]eEOhm
electron current:
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Pcollsionless Pcollisional
Electron power density Electron power density
50 | | | | 80 | | | |
10 60
40
— 30F . o
E 20 E
g =
— ~
* 20} 1 1H° x
-20
10
—-40
0 | ] ] | ] —60 —60 | | | |
0 10 20 30 40 50 60 70 0 10 20 30 40 50

t [ns] x [mm]

Sebastian Wilczek | GEC 2020 | October 6, 2020 13



Boltzmann Term Analysis

multiply by the
electron current:
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Boltzmann Term Analysis

Time-averaged electron power densities

<Ppr>x,t = 63 %
<POhm>x,t =37% <Pin>x,t =0.1%

2 1 3
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Mechanism of Electron Power Absorption

more information about the electron power absorption by Maté Vass

Session PW2: Capacitively Coupled Plasmas |l
1:00 PM-2:30 PM, Wednesday, October 7, 2020

Chair: Xiaopu Li, Applied Materials

Abstract: PW2.00001 : Electron power absorption in capacitive RF plasmas based on a moment analysis of

the Boltzmann equation
1:00 PM-1:30 PM Live
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Electron Temperature

Electron Energy Probablllty Functlon
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m glectron temperature (thermodynamic relation): 7, = g(e) ~ 1.9eV
® good approximation to represent the low energetic electrons (99% population)
m strong anisotropy for the high energetic electrons (1% population)

® provide a kinetic concept of the temperature to discuss the anisotropy
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Electron Temperature
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Electron Temperature E

momentum balance o(n i) o(naui)  0(n.T))
: : . m + m + = —enE, — 11
in x-direction (parallel): © ot © O ox el el
A
\/
momentum balance in 5(71 u / (it 0(n TJ_)

perpendicular-direction: /a/ /f

the parallel and perpendicular temperature communicate via collisions
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Electron Temperature
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Electron Temperature

® glmost isotropic in the center of the discharge (T = 1.9 eV)

® parallel electron temperature increases during sheath expansion

® perpendicular electron temperature temporally lags behind

® it needs a certain time to redistribute the energy due to collisions
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Electron Temperature

® this concept of the electron temperature clearly shows the degree of anisotropy

B both temperatures act like an energy reservoir and contribute to the energy density

1
w = Ene(meuﬁ +T,+2T))
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Electron Temperature

® this concept of the electron temperature clearly shows the degree of anisotropy

B both temperatures act like an energy reservoir and contribute to the energy density
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Conclusion

m CCRF discharges at low pressures (p < 10 Pa), work in a very nonlocal regime

® the Boltzmann term analysis shows an coherent terminology of how to study
the electron power gain and loss mechanism

® mostly the pressure heating term dominates at low pressures

® the concept of the kinetic electron temperature (parallel and perpendicular)
indicates that electron power absorption and electron heating are physically
two different mechanisms

® the difference of both temperatures demonstrates the degree of anisotropy

Poster Session Today:

Abstract: LT2.00023 : Basic research of electron dynamics
In low pressure capacitively coupled plasmas
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