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control of the electrons in order to optimize the industrial relevant discharges


however, electrons at low pressures (< 10 Pa) indicate a strong anisotropy


Motivation: Electron Dynamics
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control of the electrons in order to optimize the industrial relevant discharges


however, electrons at low pressures (< 10 Pa) indicate a strong anisotropy


electron distribution function strongly differs from a Maxwellian distribution


challenging to understand and control the electron dynamics  

Motivation: Electron Dynamics
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Goal of this Work
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1. How do the electrons gain and lose their energy in an electric field? 
Traditionally, how does the electron heating really work? 

2. How to deal with the thermodynamic concept of the electron    
temperature in such a very nonlocal and anisotropic regime? 
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What is actually Electron Heating?

ensemble of
electrons
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Electron Heating Terminologies
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heating

collisional collisionless
stochastic heating 

(anomalous, sheath, transit time)
(classical) ohmic heating

nonlinear electron resonance heating


pressure heating


ambipolar heating

bounce-resonance-heating


secondary electron heating


nonlinear wave-particle heating

Further terminologies:

Finally, most of the terms describe the same mechanism: 
The particle interaction with a time-varying electric field! 

However, no coherent terminologies!
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Simulation Setup
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1d3v PIC/MCC simulation


planar, parallel and infinite electrodes


axial symmetric, translational 

invariant in y and z


only parallel and perpendicular 

directions


argon gas pressure: 3 Pa


gap size: 50 mm


driving frequency: 13.56 MHz


voltage amplitude: 500 V


no surface models
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Electron Power Absorption
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electron power density:


dominant power absorption near sheath edge (black solid line)


dominant power absorption in the ambipolar region in front of the sheath edge 


how to study the electron power absorption mechanism in detail?

Pe = je ⋅ E

Please use the link to Movie 1         

https://www.dropbox.com/s/vezz6kcen0fzfu4/PowerAbsorptionICOPS2020.mp4?dl=0
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Electron Power Absorption
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me
∂(neu∥)

∂t
+ me

∂(neu2
∥)

∂x
+

∂p∥

∂x
= − eneE∥ − Πc∥

momentum balance  
in x-direction (parallel):

Please use the link to Movie 1         

https://www.dropbox.com/s/vezz6kcen0fzfu4/PowerAbsorptionICOPS2020.mp4?dl=0
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Electron Power Absorption
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E∥ = −
me

ne (
∂(u∥ne)

∂t
+

∂(neu2
∥)

∂x )
Ein

−
1

ene

∂p∥

∂x

Epr

−
1

nee
Πc∥

EOhm

solving for the  
electric field:

Please use the link to Movie 1         

https://www.dropbox.com/s/vezz6kcen0fzfu4/PowerAbsorptionICOPS2020.mp4?dl=0
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Electron Power Absorption
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multiply by the 
 electron current:

jeE⏟
Pe

= jeEin
⏟

Pin

+ jeEpr
⏟

Ppr

Pcollsionless

+ jeEOhm

POhm

Pcollisional

Please use the link to Movie 1         

https://www.dropbox.com/s/vezz6kcen0fzfu4/PowerAbsorptionICOPS2020.mp4?dl=0
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Boltzmann Term Analysis
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multiply by the 
 electron current:

jeE⏟
Pe

= jeEin
⏟

Pin

+ jeEpr
⏟

Ppr

Pcollsionless

+ jeEOhm

POhm

Pcollisional

Please use the link to Movie 2         

https://www.dropbox.com/s/vu1tlgcup4cjxu9/PowerAbsorption2ICOPS2020.mp4?dl=0
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Boltzmann Term Analysis

⟨Pin⟩x,t = 0.1 %
⟨Ppr⟩x,t = 63 %

⟨POhm⟩x,t = 37 %
12 3
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Electron Temperature
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electron temperature (thermodynamic relation): 


good approximation to represent the low energetic electrons (99% population)


strong anisotropy for the high energetic electrons (1% population)


provide a kinetic concept of the temperature to discuss the anisotropy

Te =
2
3

⟨ϵ⟩ ≈ 1.9 eV

Te ≈ 1.9 eV
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Electron Temperature
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p =
pxx pxy pxz
pyx pyy pyz
pzx pzy pzz

⟹
pxx 0 0
0 pyy 0
0 0 pzz

⟹
p∥ 0 0
0 p⊥ 0
0 0 p⊥

me
∂(neu∥)

∂t
+ me

∂(neu2
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+

∂(neT∥)
∂x

= − eneE∥ − Πc∥
momentum balance  

in x-direction (parallel):
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Electron Temperature
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me
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∂t
+ me

∂(neu2
⊥)

∂x
+

∂(neT⊥)
∂x

= − eneE⊥ − Πc⊥
momentum balance in  

perpendicular-direction:

me
∂(neu⊥)

∂t
+ me

∂(neu2
⊥)

∂x
+

∂p⊥

∂x
= − eneE⊥ − Πc⊥

me
∂(neu∥)

∂t
+ me

∂(neu2
∥)

∂x
+

∂(neT∥)
∂x

= − eneE∥ − Πc∥
momentum balance  

in x-direction (parallel):

the parallel and perpendicular temperature communicate via collisions
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Electron Temperature
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T∥ =
p∥

ne
= me ( < v2

∥(x, t) > − u2
∥(x, t))

T⊥ =
p⊥

ne
= me ( < v2

⊥(x, t) > − u2
⊥(x, t))

Please use the link to Movie 3         

https://www.dropbox.com/s/sjmmqyu3nou2r5z/TemperatureICOPS2020.mp4?dl=0
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Electron Temperature
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almost isotropic in the center of the discharge (T = 1.9 eV) 


parallel electron temperature increases during sheath expansion


perpendicular electron temperature temporally lags behind


it needs a certain time to redistribute the energy due to collisions

Please use the link to Movie 3         

https://www.dropbox.com/s/sjmmqyu3nou2r5z/TemperatureICOPS2020.mp4?dl=0
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Electron Temperature
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this concept of the electron temperature clearly shows the degree of anisotropy


both temperatures act like an energy reservoir and contribute to the energy density


w =
1
2

ne(meu2
∥ + T∥ + 2T⊥)

Please use the link to Movie 3         

https://www.dropbox.com/s/sjmmqyu3nou2r5z/TemperatureICOPS2020.mp4?dl=0
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Electron Temperature
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this concept of the electron temperature clearly shows the degree of anisotropy


both temperatures act like an energy reservoir and contribute to the energy density


∂
∂t

w + ∇ ⋅ ⃗Q = Ptot − εcenergy conservation:

Please use the link to Movie 3         

https://www.dropbox.com/s/sjmmqyu3nou2r5z/TemperatureICOPS2020.mp4?dl=0
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Conclusion
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CCRF discharges at low pressures (p < 10 Pa), work in a very nonlocal regime


the Boltzmann term analysis shows an coherent terminology of how to study 

the electron power gain and loss mechanism 


mostly the pressure heating term dominates at low pressures


the concept of the kinetic electron temperature (parallel and perpendicular) 

indicates that electron power absorption and electron heating are physically 

two different mechanisms 


the difference of both temperatures demonstrates the degree of anisotropy



