RUB

THE CONVERSION OF CARBON DIOXIDE IN RADIO-FREQUENCY DRIVEN ATMOSPHERIC PLASMA JETS

<u>Sebastian Wilczek</u>¹, Maximilian, Klich¹, Yue Liu¹, Natalia Y. Babaeva², George V. Naidis², Philipp Wirth¹, Ihor Korolov¹ and Thomas Mussenbrock¹

¹Ruhr-University Bochum, Germany ²Joint Institute for High Temperature, Russia

Carbon Dioxide Conversion

- CO_2 strongly contributes to an increase of greenhouse gases
- recycling into valuable chemicals and new fuels
- energy efficient splitting of $CO_{\rm 2}$
- plasma based conversion can replace thermal conversion
- using renewable energy sources
- energetic electrons lead to gas activation such as dissociation, ionization and excitation
- what kind of plasmas are suitable:
 - dielectric barrier discharge
 - microwave plasma
 - gliding arc discharge
 - radio-frequency driven plasma jets

← focus of this talk

COST Reference Microplasma Jet

[3] Source: https://www.cost-jet.eu/

- based on the design of the μ -APPJ
- applications: water treatment, surface modification, biological applications, conversion of molecules
- radio-frequency driven (13.56 MHz, VWT)
- gas flow and mixture into a small discharge channel
- quadratic cross section of the channel (1x1 mm)
- 30 mm long channel reaching the effluent

[3] Klich, Wilczek, Donkó and Brinkmann, Plasma Sources Sci. Technol. 31 045003 (2022)

How to Investigate this Process?

2d Simulation: nonPDPSIM

unstructured mesh for the 2d setup

Gas Dynamics

time scale of the effluent (ms)

- application: interaction of the effluent with materials and surfaces (water treatment)
- focus on $CO_2\ \mbox{conversion}$
- region of interest (ROI) for the conversion is the discharge channel

Conversion of Carbon Dioxide

RUB

UNIVERSITÄT BOCHUM

Conversion of Carbon Dioxide

- increasing the RF voltage leads to higher conversion rate ($P \approx 1 \, \mathrm{W}$)
- comparing this with similar experimental results (different jet design with 13 mm width using FTIR), a higher conversion can be achieved
- however, voltage from the simulation (550 $\leq V_{\rm RF} \leq 1000$ V) does not match correctly with experimental results ($200 \leq V_{\rm RF} \leq 700$ V)

Electron Dynamics

times scale of one RF-cycle: $T \approx 74 \text{ ns}$

dominant ions are O⁺

negative species are dominated

RUHR

UNIVERSITÄT BOCHUM RUB

Comparison with PIC/MCC

[3] Klich, Wilczek, Donkó and Brinkmann, Plasma Sources Sci. Technol. 31 045003 (2022)
[9] Vass, Wilczek, Schulze, Donkó, Plasma Sources Sci. Technol. 30 105010 (2022)
[10] S. Wilczek et al., Phys. Plasma 23, 063514 (2016)

10

Summary and Outlook

Summary

- CO₂ conversion was studied in the COST jet by 2d fluid simulations (nonPDPSIM)
- 18% conversion can be achieved by changing the RF voltage in the simulation
- electron dynamics show non-neutral dynamics, which is also observed in kinetic PIC/MCC simulations

<u>Outlook</u>

- chemistry set must be modified in order to include a more accurate dissociation channel
- the parameter range will be adjusted (different flow rate, higher driving frequencies, voltage waveform tailoring)
- experimental results (PROES, mass spectroscopy, TDLAS) will provide better insight about the potential operating parameters

Acknowledgement

Thank you for your attention

Special thanks to:

- Prof. Mark Kushner
- Hendrik Burghaus
- Maxi Klich
- Ihor Korolov
- Andrew Gibson
- David Schulenberg

- Philipp Wirth
- Youfan He
- Máté Vass
- Yue Liu
- Natalia Babaeva
- Thomas Mussenbrock

RUHR UNIVERSITÄT

BOCHUM

RUB

